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Modeling the Gate 1/V Characteristic of a GaAs
MESFET for Volterra-Series Analysis

STEPHEN A. MAAS, MEMBER, IEEE, AND
ANDREA CROSMUN, MEMBER, IEEE

Abstract —This paper shows that the Taylor-series coefficients of a
FET’s gate/drain I/V characteristic, which is used to model this nonlin-
earity for Volterra-series analysis, can be derived from low-frequency RF
measurements of harmonic output levels. The method circumvents many of
the problems of using dc measurements to characterize this nonlinearity.

I. INTRODUCTION

Volterra-series analysis [1]-[3] is an efficient and practical
method for determining intermodulation levels in small-signal
MESFET amplifiers. The Volterra series is particularly valuable
when implemented in a general-purpose computer program [4],
because it can be used to analyze very large or complex circuits,
does not require that the circuit topology be simplified, and is
significantly more efficient than time-domain or harmonic-bal-
ance methods.

Although much research has been directed at developing
large-signal FET models for use with harmonic-balance analysis,
very little work has been done to model GaAs MESFET’s for
Volterra-series analysis. Modeling GaAs MESFET’s presents a
number of subtle problems that have been noted occasionally by
other authors (see, e.g., [S] and [6]). One of the most serious of
these problems is the difficulty of modeling the FET’s “nonlinear
transconductance,” or, more precisely, its nonlinear incremental
gate/drain I/V characteristics. This paper describes a method
for determining the parameters of this characteristic by means of
simple, low-frequency RF measurements.

II. Tue MESFET MODEL

Fig. 1 shows a small-signal nonlinear model of a MESFET. It
consists of a modified conventional small-signal linear model in
which three elements—the gate/source capacitance C,,, the
drain/source resistance R, and the drain current 1,(v,)—are
nonlinear. Although C,, and R,, are significant sources of inter-
modulation in small-signal FET’s, in most cases the dominant
nonlinearity is that of i, (v,).

The nonlinear resistive elements are characterized by Taylor-
series expansions of their 1 /V characteristics in the vicinity of the
dc bias point. Thus, the gate/drain transfer nonlinearity i,(v,) is

i,= M + l M 2
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Fig. 1. Small-signal, nonlinear equivalent circuit of a GaAs MESFET

where I,(V,) is the large-signal gate/drain characteristic and i,
and v, are, respectively, the incremental (RF) gate and drain

currents, i.e., the current and voltage deviations from the bias
point 1, (V, o). Then i, is expressed as

iy =aw, +apy +aguy + - (2)

The traditional method of determining the series coefficients
a, is to measure the I/V characteristic at a fixed drain-bias
voltage and to perform a least-squares fit of i,(v,) to a polyno-
mial of the desired degree. Although this process is usually
adequate for determining a; (which is equivalent to the linear
transconductance), it is often unsatisfactory for determining the
higher order coefficients. Because of the ill-conditioned nature of
the normal equation, the values of a, determined in this manner
are very sensitive to measurement inaccuracy, round-off errors,
and the selection of data points.

Differentiating the measured data directly is often adequate for
determining @, and sometimes a,; however, differentiation exac-
erbates the effects of round-off errors and thus makes the higher
derivatives unreliable.

A more fundamental problem is related to traps in the FET’s
channel; these introduce long time constants into i,(v,) and
cause differences between the dc and RF I/V characteristics.
Trapping effects are often not evident in a; or a,, but derivatives
of higher order are very sensitive to them. This is particularly the
case when automated equipment is used to measure I,(V,);
differences in stepping speed and dwell time at each data point
affect the coefficients’ values strongly.

An effective way of circumventing these problems is to derive
the series coefficients from RF measurements instead of dc. The
RF measurements are performed at a frequency in the VHF
range, at which both trapping effects and the FET’s reactive
parasitics are negligible. Under these conditions the levels of the
harmonic output components are functions of only the input
power, the FET’s source resistance, and the series coefficients. It
is a simple matter to measure the harmonic levels and to derive
the coefficients from them.

III. DESCRIPTION OF THE MEASUREMENTS

When the RF frequency is very low, the equivalent circuit of
Fig. 1 can be simplified to form the circuit shown in Fig. 2. In
Fig. 2 the FET is driven by an RF source at a frequency of

(0018-9480,/89/0700-1134$01.00 ©1989 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO

Ry

%_

OFR

ivg)

3

<

_

Fig. 2. Equivalent circuit of a FET valid at frequencies in the VHF range.
R, is the output-shunting resistor used to minimize harmonic generation
in R,,.

approximately 50 MHz, and the drain is terminated in a resis-
tance R;, with R, < R,,. R, is a shunting resistor that reduces
the current in R, to the point where its effects are negligible;
R, should be made as small as possible while still allowing
harmonic output components to be observable on a spectrum
analyzer. Because the series coefficients are derived from the
relative levels of the harmonics, and not their absolute powers,
the value of R, does not affect the accuracy of the measurement.

Using the method of nonlinear currents [2], [3], one can show
that the first three harmonics of the drain current, I,_,, are

aVy
ira ®
_ az(l_ ale)I/g:i
> 21+ 4R,
(a;—2a3R,)(1- RV}
41+ q;R,)’

(4)

I,= (3)
V,, is the magnitude of v,,(¢); ie,
0, (1) =V cos (ar) (©)
and the available power of the source is
Ve
3 (M
8R,,

Substituting (7) into (3) and (4), dividing (4) by (3), and squaring *
the result gives the ratio of second-harmonic output power to
fundamental output power, IMR ,:

P

a

2a%Rm(1 - a1R5)2Pa
ai(1+ ale)2

A similar process gives the ratio of third-harmonic output power
to fundamental output power, IMR ;:

IMR, = (8)

2(ay~243R,)(1- a;R,)R,, |’ ©
a,(1+ ;R,)’

When the FET is biased and excited by a low-frequency RF

source, the values of a, can be found by measuring the harmonic

output power and solving (7) through (9). The process is as
follows:

IMR; = P2,

1) g, is determined in the conventional manner, i.e., by dc or
RF measurements;

2) IMR, is measured by means of a spectrum analyzer, and
(8) is solved to determine a,;
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TABLE 1
TAYLOR-SERIES COEFFICIENTS
AVANTEK AT10650-5
Tq 4 3 33
0.019 0.041 0.0188 -0.0148
0.020 0.041 0.0171 -0.0145
0.021 0.041 0.0158 -0.0128

3) IMR, is measured in similar fashion and (9) is solved to

determine a,.

Equation (8) does not indicate whether a, is positive or negative.
However, because a MESFET’s transconductance invariably rises
with v,, a, is invariably positive (this is generally not the case in
HEMT’s, but even then the regions of positive and negative a,
are clear from the transconductance curve). Because of the
squared term in brackets, two values of a, satisfy (9). One can
determine the correct root by measuring a few values of «, at
nearby bias points and picking the value of a5 that most closely
matches a; =0.33 da, /dv,. Usually the two values of a,; have
different signs; then, to select the correct value of a5, one need
only determine whether a, rises or falls with v,.

IV. EXPERIMENTAL RESULTS

This method was used to determine the incremental gate 7/V
characteristic of a packaged Avantek AT10650-5 MESFET bi-
ased at a drain voltage of 3 V and drain current of 20 mA. The
FET’s transconductance was measured at dc, and its small-signal
equivalent circuit (including the package parasitics) was deter-
mined by adjusting its circuit element values until good agree-
ment between calculated and measured S parameters was ob-
tained. The FET was then installed in a low-frequency test
fixture having a shunting resistance R; of 5 . The input power
P, was —11 dBm at a frequency of 50 MHz.

The a, coefficients were determined at 19, 20, 21 mA, and the
values in Table I were obtained. The coefficient a, was found to
decrease with I, and the two roots of (9) had different signs:
therefore the negative value of a; is the correct one.

The FET’s gate/source capacitance was modeled as an ideal
Schottky-barrier junction capacitance, and the nonlinear drain/
source resistance was derived from low-frequency Y parameters
measured at a variety of bias voltages. When the source and load
terminations were 50 €, the program described in [4] predicted
the FET’s third-order intermodulation intercept point to be 20.8
dBm at 10 GHz. This result agrees well with the measured value
of the intercept point, which was 22.4 dBm. When the output
port was conjugate matched, the calculated intercept pomnt was
24.1 dBm, compared to a measured value of 23.0 dBm. Other
tests have shown equal or superior agreement. These results
imply that the intermodulation levels in small-signal amplifiers
can be predicted within 2 to 3 dB. We believe that the major
factor that limits the accuracy is the linear part of the FET's
equivalent-circuit model, especially the part that models the
package. Thus, even better accuracy could be obtained with chip
or MMIC circuits.
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Note on the Impedance of a Wire Grid Parallel to a
Homogeneous Interface

JEFFREY L. YOUNG anND JAMES R. WAIT, FELLOW, IEEE

Abstract —We provide new numerical data for the correction factor
which is used to calculate the impedance of a planar wire grid parallel to
the interface between two dielectric half-spaces. Comparisons are made
with earlier investigations which clarify, extend, and supersede previous
computations. Here we show more clearly the significant influence of the
interface on the equivalent grid impedance.

I. INTRODUCTION

A wire grid over a half-space is analogous to a transmission
line with a shunt impedance. This shunt impedance consists of a
logarithmic term modified by a correction factor, A. Depending
on the value of h, the height of the grid above the interface, and
d, the interwire spacing, this term may have a significant contri-
bution to the total shunt impedance.

Previous results {1], [2] give only limited numerical data for A,
We have found that these results have a few computational and
drafting errors. We have reviewed the results in [1] and [2] and
present here some graphs that illustrate important features not
demonstrated in the earlier papers.

II. FORMULATION

With respect to a Cartesian coordinate system, the wire grid is
contained in the plane x =4 and is parallel to a plane interface
at x=0. The grid is composed of an array of infinite wires
parallel to the z axis and spaced a distance d between centers.
The wires are taken to be of circular cross section and the
diameter, 24, is assumed to be small compared to d. The media
in both half-spaces are homogeneous and lossless with permittiv-
ity ¢ for x>0 and permittivity €, for x <0. The magnetic
permeability is assumed to be the free-space value, p,, every-
where. A plane wave whose electric field is parallel to the z axis
impinges on the grid with an incident angle of 8, as indicated in
Fig. 1. Under the constraints of the thin wire approximation, the
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Fig. 1 The wire grid parallel to a half-space.

currents on each wire are assumed to be axially directed; from
this we require that wy/pe; @ <1.

From previous analysis [2] it shown for this case that the
equivalent shunt impedance, Z , is given by

iwpgd
7 = Ho(

8 27 1)

Here Z, is the axial impedance of the wire and A is the
correction factor. The axial impedance can be expressed in terms
of the modified Bessel functions as follows [3]:

M L(va)
" 277(1 Il(Ywa)

d
In— +A) +Z,d.
27a

)

where

Yo =i, (o, + iwe,)

1O,
PV (o, Fre,0)

Also from [2], the correction term, A, is shown to be

(3)

and

(4)

1 i 1+ Rmexp[—497[h|d‘1\/(m+D1 sin6’0):fo]
A= |
2,21 \/(m+Dlsin00)2—D12

1+R7mexp[—4¢r[h|a"1\/(m-D1 sinﬁo)z—Dlzl 2

+ ~—— 1 (5)
\/(m»Dlsinao)z—Dlz m
where
m+ D, siny)* — D —/(m + D, sinf,)’ — D?
o U Dysind)*— DF —(m+ Dysiny)° - D; ©

" y(m + D, siné,)* — D} +\/(m + D, sin6,)’>— D2

and R_, is obtained by replacing m with —m. We also have
made use of the normalized dimensions D, and D,, where
Dy =d/\ and D,=d/X,, A, and A, being the wavelengths in
the respective half-spaces. Here we should note that D)=
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